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Brownian systems with stiff elastic bonds of nearly constant length, such as long chain 
polymer molecules, behave differently when the stiff bonds are replaced by.rigid bonds 
of exactly constant length, i.e. in statistical mechanics real stiff systems cannot be 
idealized by theoretical rigid ones. It is shown that a potential force can be applied 
to the rigidly constrained system in order to make it behave like the limit of a very 
stiff elastic system. A simple explicit expression for the required potential, suitable for 
computer simulations of the Brownian motion, is given for general constraints and 
also in the particular case of a trumbbell or trimer. 

1. Introduction 
In computer simulations of the dynamics of polymer chains for the purpose of 

studying their mechanical properties such as the rheology, the bond lengths are 
usually considered to be nearly constant while the bond angles are free to change. 
The lengths of the bonds can be held virtually constant by a bond force with a very 
stiff spring. Stiff springs in Brownian motion, however, result in rapid oscillations 
in the tight potential well. As discussed by Fixman (1978), these rapid oscillations 
dominate and obscure the more interesting slower modes in which the chain changes 
its configuration. To avoid the expensive resolution of these boring rapid oscillations 
one would like to replace the stiff bonds with rigid constraints (simplification I ) .  The 
constrained system with reduced degrees of freedom can be represented using suitable 
generalized coordinates, such as the bond angles. The resulting equations of motion 
are however complicated to derive, and the back calculation of the positions of the 
monomers an additional task. Instead of introducing the generalized coordinates, one 
would like to retain in computer simulations the original Cartesian positions of each 
of the monomers and employ constraining forces (simplification 11). 

Unfortunately simplifications I and II each introduce different errors in the statis- 
tical mechanical description of the Brownian motion of the real stiff polymer chain. 
In ordinary, non-thermal, mechanics there is no difficulty in replacing stiff bonds 
by the idealisation of rigid constraints and no difficulty in treating the constraints 
directly or by generalized coordinates. In statistical mechanics, however, the limit of 
a very stiff bond is a singular limit and not correctly described by a rigid link. For 
example the specific heat is proportional to the number of active degrees of freedom, 
which changes discontinuously when a stiff bond is replaced by a rigid link. Less 
obviously the Brownian motion of the configuration depends on whether the bonds 
are modelled as stiff or rigid. 
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A simple and well known example of this discrepancy between stiff and rigid 
systems is provided by the trumbbell or trimer consisting of two outer monomers 
joined by bonds to a central monomer with no restriction on the rotation of the polar 
angle 6 between the two bonds. If the bonds are stiff (with non-zero natural length), 
then in thermodynamic equilibrium all bond angles are equally probable, so that the 
probability distribution function for the included angle 0 is 

ps(8) = sin0 

in three dimensions. If the stiff bonds are replaced by rigid bonds, then the probability 
distribution becomes non-uniform (Kramers 1946; Hassager 1974; Gottlieb & Bird 
1976; Helfand 1979; Rallison 1979; and van Kampen & Lodder 1984): 

where ml and m3 are the masses of the outer two monomers and m2 is the mass of 
the central monomer. Computer simulations of trimers using the Langevin equation 
(Roy 1990) find these two distributions with the different types of bonds, see figure 
3(b) later. Computer simulations of inertialess diffusion (setting the masses to zero 
in the Langevin equation) find the uniform distribution p s  for the stiff bonds and, in 
the case of the rigid bonds, the non-uniform distribution given by setting the masses 
equal in the expression for p r ,  see figure 3(a) later. 

The question which this paper addresses then is how can simplifications I and 
I I  of computer simulations be modified so as to produce a correct description of 
the Brownian motion of the changes in configuration of the stiff polymer chain; a 
description which avoids the expensive resolution of the rapid oscillation in the stiff 
bond, and which further uses the simple Cartesian description. While this paper is 
directed to the Brownian motion of a polymer chain, the same issues apply to any 
Brownian system with internal degrees of freedom. 

The above problems of simplifyirig the computer simulations of stiff polymer chains 
were discussed clearly and solved by Fixman (1978), although we shall observe later 
that some of his remarks may have been incorrect. Using a generalized coordinate 
formulation, he showed for just the case of zero masses that the configurational 
changes of a stiff system could be modelled by a rigid one to which a corrective 
pseudo-potential force was applied. In this paper the problem will be tackled directly 
in the Cartesian coordinates, producing an explicit expression for the corrective 
potential in terms of the constraints which is easier to apply in computer simulations. 
We shall also find how the random forces act in the rigid system to produce the 
different equilibrium probability distribution to that in a stiff system. 

The idea of a corrective pseudo-potential force was suggested independently by 
Rallison (1979), who used a much simpler approach based on Maxwell-Boltzmann 
thermodynamic equilibrium distributions in the full phase space, i.e. with non-zero 
masses. Such an approach is of course not applicable to computer simulations of 
the dynamics of the polymer chains. Rallison further showed how reducing the 
temperature in a quantum mechanical description would freeze out the vibrational 
stiff modes, but that this would not recover the rigid system because the zero point 
energy would vary with configuration. In this paper we assume that the temperature 
is sufficiently high for quantum mechanical effects to be ignored. 

We start by studying the Brownian motion of a polymer chain with rigid links and 
using Cartesian coordinates. This study will yield the source of the errors in the rigid 
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Cartesian description. It will be found that the application of a pseudo-potential 
force will convert the rigid problem to the correct limit of the very stiff problem. The 
Brownian motion is first studied using a Langevin equation with mass. Then setting 
the mass to zero, the usual diffusional description used in many computer simulations 
is investigated. It is necessary to calculate the small nonlinear effect of a steady drift 
motion. One part of this drift motion is connected with the variation of the diffusivity 
with configuration, and this part must be incorporated into the simulation in order to 
model the diffusion process correctly. The other part connected with the variation of 
the inertia with configuration is the error which needs to be removed. The Langevin 
equation approach is used because with and without mass it forms the basis of many 
computer simulations. 

2. Governing equations 
Consider a polymer chain with N monomers at Cartesian positions XI,. . . , XN, 

with masses ml, ..., mN and coefficients of friction ,..., lN .  We will use the 
3N vector of positions xi = (XI ,..., XN) with i = 1 ,..., 3N to describe the con- 
figuration of the polymer, along with the 3N x 3N diagonal tensor of masses 
mij = diag(ml,ml,ml,m2,. . .,mN) with i, j = 1,. . ., 3N and similar 3N x 3N diago- 
nal tensor C i j  of the frictional coefficients. 

Let there be K rigid constraints (such as keeping the bond lengths constant) 
of the form g"(xi) = 0 with a = 1, ..., K .  These constraints are maintained by 
tensions (Lagrange multipliers) T a  acting in the directions gp = dg"/dxi in the 3N 
configurational space. 

The momentum equation of the polymer chain is then the Langevin equation with 
a thermal random forcing f( t )  : 

Maintaining the constraints in time requires that the velocity is orthogonal to the 
constraints 

i , g p  = 0 
and also that there are components of the acceleration parallel to the constraints only 
when the constraints are curved (centrifugal components) 

xigq + jCi.kjg; = 0, 

where g$ = d2g"/dxidxj is the curvature of the constraints. In these governing 
equations, the usual summation convention is applied to the subscripts taking values 
in the configurational space 1,. . . ,3N and also to the superscripts taking values in 
the constraint space 1,. . . , K .  

First it is instructive to derive a form of the momentum equation with the tensions 
eliminated. Solving the momentum equation for the acceleration 

we can substitute this into the second constraint equation to yield an instantaneous 
equation for the tensions: 

Solving this linear system of equations in the constraint space for the tensions T" 

8 FLM 271 
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and substituting back into the momentum equation, we obtain 
_c - 

gi + m-'[,k& v = m-'fj 11 - m ; ' g ~ M a h g , h l ~ k ~ l ,  

where M is a tensor in the constraint space defined by its inverse 

and where there is a modified inverse mass tensor - 
m,i' = m;' - m;lg~Mabggl'm~l.  

This modified inverse mass tensor is orthogonal to the constraints - N 

m:'g! = 0 and g,"mX1 = 0, 
11 I 11 

i.e. no component of the force f in the direction of the constraints produces any 
acceleration and further the force produces an acceleration with no components in 
the directions of the constraints. This orthogonality is achieved by the application of 
tensions in the momentum equation. 

Mathematically m-l is the inverse in the constrained configurational space of m 
which has first been projected orthogonal to the constraints. Define the projection 
operator for a vector onto the constrained configurational space: 

- 

P . .  = 6.. - gfGabgb 
' I  ' I  1 1  

with G a tensor in the constraint space defined by its inverse 

(G-')ab = gag , .  a b  

Then the projection for the mass tensor is 

Now we can see that the modified inverse mass tensor m-l is simply the inverse of 
mi in the constrained configurational space: 

- 
m..  -1 mjk I - - (mi' - m,'g,"Mabg;mG') (mjk - mjlgFG"gf) = Pik. 

11 

Note that the modified inverse mass tensor is not the projection of the inverse mass 
tensor, i.e. m i 1  # Pikmi'Plj. 

_c 

In the special case of a polymer chain with monomers of equal mass m, 

1 
m 

m i  = mPij and m,il = -Pij. 

3. Linear theory of the random walk 
We recall briefly in this section the classical linear theory of Brownian motion 

in order to derive expressions for the diffusivity and the magnitude of the random 
forces in terms of the Cartesian description of the constrained system. Integrating the 
linearized momentum equation with tensions eliminated, we have 
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Here the two terms in square brackets including exponentials are defined in terms of 
their convergent power series. 

Making the white-noise approximation that the thermal random forcing is corre- 
lated on timescales too short to be of interest 

in the velocity correlation function 

and taking the limit t + 00 in order to forget the initial conditions, we obtain 

- 
Premultiply this expression by m-'[ so that one can integrate by parts: 

Now the equipartition of energy (really a definition of the temperature k T )  requires 

[Note that the expression of the equipartition of energy gives the total kinetic energy 

l m . . m  = LkTm..m:' = LkT (aii - g:Mabg:m,') = i k T  (3N - K ) ,  
2 1 1 1 J  2 '1 1J 2 

i.e. i k T  times the number of unconstrained degrees of freedom.] Substituting the 
value of the variance of the velocities, we have the magnitude of the random forcing 
F given by 

- - - -  - -  
m,jlF. J Y  m-1 ya = m:'(. ij J Y  m-1. yu 

Now there can be no components of the random forcing F parallel to the constraints, 
because they would have no dynamical effect. Hence the solution for F is 

Fij = [!: 
1J ' 

where 5' is the orthogonal projection 

I 
S i j  = PiklklPij. 

Thus we have the standard fluctuation-dissipation result relating the magnitude of 
the random forces to the friction coefficient in the constrained configurational space. 
Note that Fixman (1978) assumed that the random forces would be unchanged by 
the constraints, F = l ,  which we shall see in $5 can produce an error. 

The projected form of the magnitude of the random forces provides a simple 
computer method for generating the required forces. First one generates unconstrained 
random forces f " ( t )  with an F' = l .  Then one constrains these random forces with 
f i ( t )  = Pijfy(t). The resulting f ( t )  have the correct F = ll. 

Finally the diffusivity is defined as the rate of change in time of the variance of the 
random Brownian walk : 

8-2 



224 E. J .  Hinch 

as t -+ 00. While one can manipulate - _  the exponentials to evaluate the integral directly, 
it is easier to premultiply by m'lc and then integrate by parts: 

using results from the fluctuation-dissipation calculation. We can solve this for 
the diffusivity using the orthogonality of the velocity and the displacement to the 
constraints gq - 

-1 a ab b -1 Dia = kTC&'  = k T  (CG1 - C i j  gjZ g k c k M )  

with Z a tensor in the constraint space defined by its inverse 

a -1 b 
( 2 - l l a b  = g n i n m g m .  

The diffusivity is thus a modified inverse of the friction tensor, one which uses the 
tensions in the momentum equation to achieve the orthogonality to the constraints. 
Note that in the above calculation one can use F = [ rather than F = c' without 
affecting the result for the diffusivity. 

In the special case of a polymer chain with monomers with equal friction coeffi- 
cients i 

kT 
Fij = cPij and D,, = -Pi,. 

i 

4. Drift at second order 
Small nonlinearities coming from the curvature of the constraints lead to a small 

steady drift motion. Part of this drift leads to equilibrium distributions which are 
erroneously non-uniform. We need to isolate this erroneous drift term in order to 
design corrective measures. 

To examine the second-order drift we expand the motion 

x( t )  = do) + x(')(t) + X q t )  + .. .  . 

in which x(')(t) represents the linear theory of the Brownian motion about the basic 
configuration x(O) with ~ ( ~ ) ( t )  the small nonlinear correction. Nonlinear terms arise 
when the constraint direction gq is evaluated at the slightly displaced position x( t )  
instead of the basic position do), the small differences being calculated by a Taylor 
series expansion 

Note that Fixman (1978) asserted that during a short interval the constraining forces 
may be restricted to lie along their original directions, although in some sense his 
analysis included changes in direction equivalent to the above expression. 

The linear theory generates no mean motion, so we are interested in the non-zero 

g?(x) = gP(x'O') + x:.')g;(x'O)) + . 
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FIGURE 1. A random walk of 500 steps of size 0.02 on a unit sphere starting from the North pole. 
Note the mean velocity in the axial direction, i.e. normal to the surface at the initial position. 

mean drift in d2)(t). Expanding the governing equations and averaging, we obtain 
the problem for the second-order mean drift: 

Now in the linear theory for the Brownian motion x( ' ) ( t )  the diffusivity x!')xy) is 
constant in time and so differentiating we have 

Thus the component of the drift acceleration parallel to the constraints vanishes. On 
the other hand the component perpendicular to the constraints will vanish once the 
drift velocity attains its terminal value. Hence all components of the mean second- 
order acceleration vanish. Note that while the curvature of the constraints leads to 
small centrifugal accelerations these are cancelled precisely in the Brownian motion 
by the effects of small changes in the constraint direction, x(')g$. 

Thus the nonlinear drift motion xY'(t) is a velocity. It has two sources. First 
there is a geometric effect in which the random walk with x2( t )  cc t on the curved 
surface g: # 0 requires a constant velocity in the direction of the normal gs, see 
figure 1. The second dynamical effect involving the tensiondisplacement correlation 
Ta( l )xy)  is more complicated. A tangential velocity i produces a frictional force [ i j i j .  

This frictional force produces a tangential acceleration mi' c j k x k  with the normal 
components of force being adsorbed by tensions Ta, one part of the tension for the 
normal components of the frictional force and one part for the normal component 
of the inertial force. Note that the tension changes sign with the velocity and thus 

- 

- 
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T+ 

FIGURE 2. A positive random velocity v+ requires, say, a positive normal tension T+ in order to 
constrain the particle as it moves along the surface from 0 to 1+. Similarly a negative random 
velocity requires a negative tension T -  as the particle moves from 0 to 1-. Viewed from 0, the 
tension T+ at 1+ and the tension T -  at 1- both have a component along the constrained surface 
from 1- to I+ (with the curvature as drawn). 

with the displacement. Now on a curved surface the normal changes direction slightly 
during a displacement. The correlation of the tension with the small change in 
normal thus results in a tangential mean force, driving a mean tangential motion, see 
figure 2. 

With the drift acceleration set to zero, the drift momentum equation gives 

Substituting this into the velocity constraint condition, we find the instantaneous 
equation governing the second-order tensions : 

To obtain the required correlation between the tension and displacement, we 
multiply the linear theory equation for the tension Tb(l) by the displacement xt) and 
average (using x(l)(t)f(t) = 0): 

(M-')"b TW) (l) = - gqm;yjlXl (1) X k  (1) . 
' k  

Substituting in the expression for the diffusivity Xi')xP) from the linear theory yields 

(M-l)ab Tb(') (') = - kTgfm;' (s,, - g j z  b bc g,[& c -1 ) xk 

= - kT ( gym&' - (M-l)abZbcg;i;l). 

Hence 

Thus the tension-displacement correlation has two parts, one from the normal part 

TU(l)xr) = - kT (Mabgpm,kl - Z ab g l l l k  b -1 ) . 
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of the inertial force and one from the normal part of the friction force, as described 
earlier. These parts will vanish if m and are isotropic in the configuration space, 
i.e. all the monomers have the same masses and same friction coefficient, because 
then the tangential velocity will only produce a tangential friction force which will 
only produce a tangential acceleration with no need for a tension. The tension- 
displacement correlation can also vanish if m is proportional to [, i.e. the mass of 
a monomer is proportional to its friction coefficient, because again the tangential 
velocity will only produce a tangential acceleration with no need for a tension. 
Note that Fixman (1978) asserted that there would be no correlation between the 
constraints and the displacements, which we find to be true only in special cases. 

Substituting into the equation for the second-order mean tensions the above ex- 
pression for the tension-displacement correlation and also the expression for the 
diffusivity, we obtain 

Solving we obtain 

ab b -1 Ta(2) = k T  g p [ U ' g i )  M"g$n,' + Z g,<, 

Grouping together those terms which involve the mass M and those which do not, 
we can simplify this expression: 

= k T  (i 
I .  

This provides a concrete form of a result in the general theory cast in terms of 
generalized coordinates, see for example equation (7.5) of Hinch & Nitsche (1993). 

In the special case of a polymer chain with monomers with equal masses and 
friction coefficients 
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5. Inertialess diffusion 
When one is interested only in the diffusional change of the configuration of the 

polymer chain and not interested in the inertial-viscous relaxation of the velocity, the 
mass in the Langevin equation can be set to zero, resulting in governing equations 

c i j i j  + Tag; = f i ( t ) ,  
i,g; = 0. 

Solving for the velocity we obtain 

21 = c,' ( f J ( t )  - Tag,"). 

(g;i,'g!) T b  = g"5,lfl. 

A, = e,'fJ 

Substituting this into the constraint on the velocity yields an instantaneous equation 
for the tensions : 

Solving for the tensions and substituting back, we obtain 
Y 

so that no component of the random forcing f in the direction of the constraint has 
any dynamical effect. 

In the linear theory of the random walk, one cannot now derive the magnitude 
of the random forces but instead must set them by the results of the fluctuation- 
dissipation theorem. With this choice, the diffusivity is given correctly by the inertialess 
dynamics, as we shall now see. First integrating the momentum equation with the 
tensions eliminated, 

we can evaluate the diffusivity : 

Using the fluctuation-dissipation result for the magnitude of the random forces in the 
constrained system, and also Ji 6(t - z)dz = t ,  we find 

Note that instead of c1 we could have used the magnitude of the unconstrained 
random forces [ in this calculation without affecting the answer. 

Proceeding to the mean drift at second order, we find that in the inertialess dynamics 
this is governed by the same equations as the drift with inertia, because we found 
in that case that there was no mean acceleration. The development will therefore be 
the same except for the calculation of the correlation between the tension and the 
displacement. When there is no mass the tensions in the linear theory have to cancel 
the components of the random force and the frictional force in the direction of the 
constraints, whereas when there is mass they must also cancel components of the 
inertial force. Multiplying the equation for the inertialess tensions by the displacement 
and averaging yields 
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= kT {g;$ - (Z-')"bGbc (gi - (G-l)cdZdegglS,k')} 

= - kT (Z-')ub {Gbcgi - ZbCgf<i l} .  

Note here it was necessary to use the constrained 5' for the magnitude of the random 
forces, because here the unconstrained [ makes this tension-displacement correlation 
vanish. Solving the above equation we have 

In the inertialess dynamics, the tangential velocity produces a tension if the friction 
coefficient c is not isotropic (friction coefficient of all the monomers equal). Thus 
we see that the above expression for the tension-displacement correlation vanishes 
when 5 cc 6. Noting that the only difference between the inertialess and the inertial 
calculation of the mean drift is the replacement of M and m by G and 6, we may 
skip the detailed calculations to assert the result 

Again the second term provides a concrete form of a result in the general theory 
cast in terms of generalized coordinates. The first term involving det G-' does not 
have a counterpart in the general theory, and so is an error resulting from using rigid 
constraints and Cartesian coordinates (simplifications I and II of the introduction). 

The results for the mean tension-displacement correlation, mean tension and mean 
motion for the special case of a polymer chain which is diffusing with monomers 
with equal friction coefficients are identical to those given at the end of the previous 
section 4 for a polymer chain with monomers with equal masses and equal friction 
coefficients governed by the Langevin equation. 

6. The dispersion equation and corrective measures 

P ( x ,  t )  satisfies the dispersion equation 
The probability distribution function for the configuration of the polymer chain 

which can be derived by integrating over all possible jumps from one configuration 
to another in a small time 6 t  and by making a Taylor series expansion for small such 
jumps (Uhlenbeck & Ornstein 1930), taking care with the non-homogeneous drift 
and diffusivity. 

Substituting in the results for the diffusivity and the mean drift, we obtain the more 
familiar diffusion equation 

ap 

where det stands for det M-' in the first case with mass and for det G-' in the case 
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of inertialess dynamics. The second term in the mean drift is seen now as essential 
in this equation to turn the dispersion process into a diffusion process; the diffusion 
process having a Fickian flux proportional to the gradient of the probability and so 
no net change with a uniform distribution. In computer simulations, regions with a 
high diffusivity are depleted by their active random motion (more thrown out than 
received from the neighbouring less active regions), and so the simulations need the 
mean drift V.D directed towards the high-diffusivity regions in order to restore a 
uniform distribution (see e.g. Ermak & McCammon 1978). 

In thermodynamic equilibrium, the steady solution is 

P c c J d e t  

which will vary non-uniformly over the space of constrained configurations if det 
varies (Kramers 1946). 

Now using stiff bonds, e.g. with a potential energy g,"g,"/2c, the probability distri- 
bution function will localized to the neighbourhood of the constrained configurations 
but with no variation around the constrained configurations, i.e. P cc 1. Hence to turn 
the rigid system into a stiff system one needs to apply the correction of a potential 
force (Fixman 1978; Rallison 1979) 

a 
axi 

- - (kT In Jdet) 
This is the main result of this paper. 

Previously Rallison (1979) had shown for the case of inertial dynamics that a 
polymer chain with rigid constraints could be made to behave like one with very stiff 
constraints by the application of a corrective potential force. His similar potential 
function kT(det)f involved the determinant of mass in the different space of con- 
strained configurations, which was not simple to relate to a Cartesian description of 
the polymer chain. The new result for systems with inertia is to express the potential 
function in terms of a mass in the space of constraints with a simple explicit form in 
terms of the constraints 

det = det (gSm;'g/b). 

Thus for systems with inertia, simplification I of the introduction can be corrected 
and a rigid system can be made to behave like one with very stiff constraints. 

For the case of inertialess dynamics which was studied by Fixman (1978), a rigid 
system described by appropriate generalized coordinates (with no explicit constraint 
condition) can sometimes behave in Brownian motion like a very stiff system if the 
generalized coordinates are selected so that equilibrium distribution is uniform in 
those coordinates (see e.g. Grassia, Hinch & Nitsche 1994), i.e. simplification I can 
be made. The generalized coordinate description has a second-order mean drift of 
V.D, which is required to turn the dispersion process into a diffusion process. When 
the further simplification I I  is made of adopting a Cartesian description of the rigid 
chain, an additional mean drift appears, C-lVkT In d m .  This erroneous drift 
can be suppressed by the application of the corrective pseudo-potential force 

- 

a 

--kTln axi " .\i det ( I  gPgb 1 )  

with a simple explicit dependence on the constraints. 
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7. Details for a trimer 

constraint functions are 
A trimer is a polymer chain with three monomers N = 3 linked by two bonds. The 

g' = i (Ixl - x2I2 - 1:)  and g 2  = i (Ix2 - x3I2 - 1;) 

with gradients 
1 g i  = (XI - x2, x2  - XI, 0) and g? = (0, x2 - x3, x3 - x2) . 

Thus 

12 1 
( M y  = 1: - + - , (M-1) = 1112-COS8 (i1 i2) m2 

and 

(M-1)" = 1; (6 + $) . 

Hence 

(Note that the calculation of the determinant for longer polymer chains only involves 
a tridiagonal matrix and so is no more complicated.) Now the only dependence of 
det M-' on configuration comes through the cos 8 with 

a 
- (11 l2  cos 8) 
axi 

= (x3 - x2, x2 - x3 + x2 - XI, x1 - x2) .  

Thus the pseudo-potential force required to correct the Langevin dynamics of a rigid 
chain to that of a very stiff chain is 

kTmlm3 cos 8 
1122(m1 + m2)(m2 + m3) - m1m3 cos2 8 

(x3 - x2, x2 - x3 + x2 - XI, x1 - x2) .  

The corrective pseudo-potential force for the case of inertialess diffusion is obtained 
by setting the masses equal in the above expression. 

Figure 3 shows that the application of these corrective forces to computer sim- 
ulations does convert the behaviour of a rigid trimer to that of a very stiff one. 
The simulations are of both inertialess diffusion and inertial Brownian motion as 
described by the Langevin equation. The simulations use the Cartesian coordinates 
of the monomers and for the rigid trimers constraining tension forces. It is nec- 
essary to average the probability distribution of one realization over a long time, 
5.1 x 1 0 5 j 1 2 / k T ,  in order to achieve the accuracy of 1% required to distinguish 
between the rigid and stiff behaviours. Further details of the difficulties of com- 
puter simulations of Brownian motion of complex systems are being prepared for 
publication elsewhere (Grassia et al. 1994). 

The mechanisms which lead to the slight preference of the rigid trimers for the 
right-angled configuration, cos8 = 0, are the two mechanisms described in figures 1 
and 2. In the geometric effect of figure 1, as the bond between XI and x2 makes a 
finite rotation, there is a component of the motion of x1 towards x2 and of x2 towards 
xl. It is this motion of x2 towards xl, and a similar motion of x2 towards x3, which 
opens up the included angle of the trimer 8. The induced change in angle is largest 
for the right-angled configuration 0 = n/2, vanishing for the straight configuration 
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FIGURE 3. The probability distribution for the included angle 0 of a trimer from computer 
simulations, normalized with m = and with the distribution 
averaged over a time 5.1 x lo5. Figure 3(a) is for inertialess diffusion, while figure 3(b) is for 
the Langevin equation with mass. The circles are for stiff springs (spring constant lo2), the 
downward-pointing triangles for rigid bonds, and the upward-pointing triangles for rigid bonds 
with the corrective pseudo-potential force. The dashed curves are the theoretical prediction for stiff 
and for rigid bonds. 

= 1 = kT = 1, with a time-step 

8 = rc and the bent-double configuration 8 = 0. The second mechanism involves the 
tension-displacement correlation of figure 2 and it comes into play only when the 
monomers have different masses and friction coefficients. It is a simple calculation to 
find the tension in the rigid bonds for the symmetric motion x1 = ( X  + cos 4, sin 4,0), 
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x2 = ( X ,  0,O) and x3 = ( X  + cos 4)  - sin 4, 0) with X = X ( t )  and 4 = $(t)  and with 
m3 = ml and c3 = ll: 

(:4sin4cos$+kcos$) 

Note that the constraining tension is not needed if the monomers have the same 
masses and friction coefficients, and that for motion which changes the configuration 
4 the tension is largest near 4 = n/4, i.e. 8 = n/2 .  

8. Conclusions 
A real polymer with stiff bonds behaves differently in Brownian motion to an 

idealized one with frozen rigid bonds. Thus some proposed methods of analysis of 
polymer molecules based on rigid constraints are questionable. As far as configura- 
tional changes are concerned, it is possible to make the chain with rigid bonds behave 
like one with stiff elastic bonds by applying a corrective pseudo-potential force 

a 
axi -- (kT In ,/&) 

to the monomer at xi. For inertial dynamics, one must use the determinant of a mass 
matrix in the space of constraints 

-1%" agb 
axi axi 

det = det (M-l)"b = d e t x m ,  - . 
1 

while for inertialess diffusion (when using a Cartesian description of the positions of 
the monomers with rigid bonds maintained by constraining tensions) one must use 
the determinant of the simpler matrix 

a g a  a g b  

axi L J ~ ,  
det = det (G.')"b = d e t x  __ I -. 

In these expressions mi is the mass of the monomer at xi) and the rigid constraints 
are expressed as 

for a = 1, ..., K .  These corrective potential forces can be easily implemented in 
computer simulations of the Brownian motion of polymer chains. 

g"(x1, x2,. . ., X N )  = 0 
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